This is inline $a$ and $\frac{1}{x}$. Qui impedit et eos magni id. Non ducimus aliquam qui consequatur minima ex distinctio ut. Aperiam dolorum eos necessitatibus similique aut qui eveniet voluptate. Quis ut ad quo rerum at ab. Sit illum reprehenderit molestias corrupti aspernatur ut et.
Eulers formula $e^{i\pi}=-1$ -1 2 shows.
Magni velit accusantium alias molestiae rerum perspiciatis. Quas reiciendis soluta perferendis aspernatur tempore vel iusto. Necessitatibus saepe nihil perferendis quos. Amet eligendi doloribus consequatur consequatur ab beatae iure. Quibusdam rerum eum dignissimos impedit atque.
A link looks unintrusive in the text much like Duck Duck Go this link and therefore the reading flow is not obstructed.
In equation \eqref{eq:sample}, we find the value of an interesting integral:
\begin{equation} \int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15} \label{eq:sample} \end{equation}
\begin{equation} \int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15} \end{equation}
And here are the blocks: \begin{equation} f(x) = \sin x \end{equation}
$$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} $$
$$ \int_0^\infty dx $$